Theses and Dissertations

ORCID

https://orcid.org/0000-0002-6319-4186

Advisor

Hollis, T. Keith

Committee Member

Montiel-Palma, Virginia

Committee Member

Wipf, David

Committee Member

Emerson, Joseph

Committee Member

Webster, Charles Edwin

Date of Degree

5-10-2024

Original embargo terms

Embargo 2 years

Document Type

Dissertation - Open Access

Major

Chemistry

Degree Name

Doctor of Philosophy (Ph.D)

College

College of Arts and Sciences

Department

Department of Chemistry

Abstract

The N-heterocyclic carbene (NHCs) based pincer ligands field is still in its infancy after decades. They are known for their applications in organocatalysis, coordinating with transition metals and p-block elements, catalysis, and material chemistry. Among all NHCs, CCC-NHC-based on late-transition metal complexes were first developed by our group in 2005 with a unique metalation/transmetalation strategy. Our group also designed the chiral version of these CCC-NHC ligands to synthesize its metal complexes. However, their asymmetric catalytic applications were unknown. Wanting to expand on this work, we first successfully synthesized achiral CCC-NHC pincer complexes and their new catalytic application, as it is economically cheaper than directly working on developing a chiral version for catalysis. Then, different chiral CCC-NHC salts were synthesized based on different chiral arms and N-substituents on NHCs to modify their steric hindrance and electronic structure properties. These precursors were used for their enantioselective application in nucleophilic catalysis. In Chapter II, we will discuss the synthesis of the CCC-NHC pincer Ir (III) dimer complex and its first catalytic application in C−H functionalization of N-methylindoles with alpha-aryl-alpha-diazoacetates at the C-3. The best reaction conditions involve a combination of catalysts and substrates in a specific order. It resulted in the activation of the C-H bond with the formation of a new C-C bond to generate alpha-aryl-alpha-indolyl acetates with more than 99% conversion at room temperature without requiring any additives. The substrate scope and limitations of N-methyl indoles and diazoacetates were also explored. Chapter III will focus on a new modified synthetic route to synthesize and characterize chiral CCC-NHC chloride salts in a shorter synthetic route than the known one. The metalation/transmetalation of chiral CCC-NHC ligands with late transition metals and the initial attempt in asymmetric catalysis will be discussed in Chapter IV. Chapter, V, demonstrated nucleophilic catalysis of CCC-NHC precursors in benzoin condensation of aldehyde. The study started with the evaluation of fifteen different achiral bis-CCC-NHC salts based on triazole, imidazole, and benzimidazole. Further studies with chiral CCC-NHC salts also resulted in more than 99% conversion and 99% ee in benzoin products. The substrate scope of benzaldehyde with different substituents was also explored

Available for download on Friday, May 15, 2026

Share

COinS