Theses and Dissertations

ORCID

https://orcid.org/0000-0003-0455-6017

Advisor

Smith, Dennis W., Jr.

Committee Member

Pittman, Charles U., Jr.,

Committee Member

Hollis, Keith

Committee Member

Muñoz-Hernandez, Miguel

Committee Member

Mlsna, Todd

Date of Degree

8-13-2024

Original embargo terms

Embargo 2 years

Document Type

Dissertation - Open Access

Major

Chemistry

Degree Name

Doctor of Philosophy (Ph.D.)

College

College of Arts and Sciences

Department

Department of Chemistry

Abstract

Fluoropolymers are well-known for their exceptional thermo-oxidative stability, chemical resistance, UV-light resistance, and low surface energy properties, making them essential for high-performance applications across clean energy, medical device, automotive, aerospace, electronics, and telecommunication industries. Since the discovery of poly(tetrafluoroethylene) (PTFE), numerous fluorinated thermoplastics and fluoroelastomers have entered the market. The global fluoropolymer industry is projected to reach $18 billion by 2033. Recent advancements have focused on integrating mainchain fluorocarbon moieties, such as perfluorocyclobutyl (PFCB), perfluorocycloalkenyl (PFCA), fluoroarylene vinylene ether (FAVE), and the hexafluoroisopropylidene (6F) group, into semi-fluorinated polymers. These modifications enhance properties like thermal stability, processability, and optical transparency, while reducing water absorption, thereby enhancing durability. This dissertation introduces a versatile electrophilic aromatic substitution methodology for synthesizing polymer containing the 6F groups, followed by a practical approach for synthesizing semi-fluorinated alcohols and diols. The research explores possibilities for creating novel materials, showcasing the utility of conducting hexafluorohydroxyalkylation by using hexafluoroacetone trihydrate (HFAH) for incorporating the 6F group. An interfacial electrophilic aromatic substitution polymerization using HFAH with aromatic monomers is developed in Chapter 2, which can generate semi-fluorinated polyaryl ethers and polyphenylenes with high regioselectivity and molecular weights up to 60 kDa. These polymers exhibit high solubility in organic solvents and excellent thermo-oxidative stability. The dielectric and optical characterization of these fluoropolymers is presented. Chapter 3 extends this electrophilic substitution methodology to the preparation of random and block semi-fluorinated copolymers, as well as thermoset materials, demonstrating the versatility in polymer design and application through the fluorohydroxyalkylation of aromatic compounds. Chapter 4 details the synthesis and characterization of 4,4’-bis(2-hydroxyhexafluoroisopropyl)diphenyl ether, a semi-fluorinated diol. This monomer was used to prepare the first reported polycarbonate with hexafluoroisopropoxy groups -C(CF3)2O- incorporated in the main chain via polycondensation. Polyesters and polysilyl ethers were also prepared from this diol. Finally, the dissertation explores attempts to form metallocene condensation metallopolymers by reacting the acidic and sterically hindered semi-fluorinated diol with group IVB metallocene dichloride.

Available for download on Saturday, August 15, 2026

Share

COinS