Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Srinivasan, Kalyan

Committee Member

Chamra, Louay

Committee Member

Mago, Pedro

Date of Degree

12-13-2008

Document Type

Graduate Thesis - Open Access

Major

Mechanical Engineering

Degree Name

Master of Science

College

James Worth Bagley College of Engineering

Department

Department of Mechanical Engineering

Abstract

Strict emissions legislation and energy security debates have spurred extensive research in alternative fuels and renewable energies. Literature research has shown the need for improvements in internal combustion engines (ICE) due to their low efficiencies. Significant gains in efficiency can be accomplished with the use of waste heat recovery (WHR) techniques. Organic rankine cycles (ORC) with turbocompounding harness the waste heat from an ICE to improve efficiency and fuel economy while reducing brake-specific emissions. A mathematical model was developed to explore the potential gains in 1st and 2nd law efficiencies. The model approaches the evaluations of the ORC from a practical and a theoretical method. The practical method in evaluation 1 limits the outlet exhaust gas temperatures from the evaporator to prevent the formation of condensation. The performance of the ORC is then evaluated and compared to the evaluation 2. In the theoretical method, in evaluation 2, the effect of pinch point on the evaporator and the entire cycle was analyzed. This analysis was conducted for R113, a dry fluid, and propane, a wet fluid, in order to analyze the differences in the two types of fluids. R113 showed a 13% – 22% and a 6% – 14.7% increase in 1st and 2nd law efficiencies, respectively. Propane showed a 9% – 17.4% and a 2% – 8.5% increase in 1st and 2nd law efficiencies, respectively. It was also shown that as the pinch point temperature decreases the 2nd law efficiencies increased. It was concluded that use of ORC with turbocompounding is an effective method for waste heat recovery in order to increase ICE efficiency.

URI

https://hdl.handle.net/11668/17496

Share

COinS