Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Prabhu, Raj Kumar
Committee Member
Chowdhury, Souma
Committee Member
Priddy, Lauren B.
Committee Member
Reneker, Jennifer
Committee Member
Elder, Steven H.
Other Advisors or Committee Members
Keith, Jason M.
Date of Degree
8-9-2019
Original embargo terms
Visible to MSU only for 2 years
Document Type
Graduate Thesis - Open Access
Major
Biomedical Engineering
Degree Name
Master of Science
College
James Worth Bagley College of Engineering
Department
Department of Agricultural and Biological Engineering
Abstract
This study presents mathematical surrogate models, derived from finite element kinematic response data, to predict car crash-induced occupant head and neck injury risk for a broad range of impact velocities (10 – 45 mph), impact locations, and angles of impact (-45° to 45°). The development of these models allowed for wide-scale injury prediction while significantly reducing the overall required number of impact test cases. From these, increases in both the impact velocity and the impact’s locational proximity to the occupant were determined to result in the greatest head and neck injury risks. Additionally, strong interactions between the impact orientation variables (location and angle) produced significant changes in the head injury risk, while the neck injury risk was relatively insensitive to these interactions; likely due to the uniaxiality of the current standard neck injury risk metrics. Overall, this methodology showed potential for future applications in wide-scale injury prediction or vehicular design optimization.
URI
https://hdl.handle.net/11668/14510
Sponsorship
This material is based upon work supported by ERDC under Contract No. W912HZ-17-C-0021. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERDC. Public release; distribution unlimited.
Recommended Citation
Berthelson, Parker, "A coupled finite element-mathematical surrogate modeling approach to assess occupant head and neck injury risk due to vehicular impacts" (2019). Theses and Dissertations. 91.
https://scholarsjunction.msstate.edu/td/91