Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Hansen, Eric
Committee Member
Banicescu, Ioana
Committee Member
Swan, J. Edward, II
Date of Degree
12-13-2014
Document Type
Graduate Thesis - Open Access
Major
Computer Science
Degree Name
Master of Science
College
James Worth Bagley College of Engineering
Department
Department of Computer Science and Engineering
Abstract
A stochastic shortest path problem is an undiscounted infinite-horizon Markov decision process with an absorbing and costree target state, where the objective is to reach the target state while optimizing total expected cost. In almost all cases, the objective in solving a stochastic shortest path problem is to minimize the total expected cost to reach the target state. But in probabilistic model checking, it is also useful to solve a problem where the objective is to maximize the expected cost to reach the target state. This thesis considers the maximum-time stochastic shortest path problem, which is a special case of the maximum-cost stochastic shortest path problem where actions have unit cost. The contribution is an efficient approach to computing high-quality bounds on the optimal solution for this problem. The bounds are useful in themselves, but can also be used by other algorithms to accelerate search for an optimal solution.
URI
https://hdl.handle.net/11668/20375
Recommended Citation
Kozhokanova, Anara Bolotbekovna, "Bounds for the Maximum-Time Stochastic Shortest Path Problem" (2014). Theses and Dissertations. 924.
https://scholarsjunction.msstate.edu/td/924