Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Keith, Jason M.

Committee Member

Toghiani, Hossein

Committee Member

Krishnan, Sundar R.

Committee Member

Srinivasan, Kalyan K.

Date of Degree

5-6-2017

Original embargo terms

MSU Only Indefinitely

Document Type

Dissertation - Campus Access Only

Major

Chemical Engineering

Degree Name

Doctor of Philosophy

College

James Worth Bagley College of Engineering

Department

Dave C. Swalm School of Chemical Engineering

Abstract

Gold-based catalysts can be replaced with platinum group catalysts in catalytic automotive exhaust aftertreatment if their thermal stability and durability issues can be resolved. Hence, one of the potential markets for gold catalysis is the automotive after treatment market, our interest is to synthesize a gold-based catalyst which has practical applications in automotive industry specifically for diesel-methane dual fuel low-temperature combustion strategy where the exhaust temperature is varying from ~ 200 to400° C. Our research focused on synthesizing a bimetallic gold-copper catalyst which is not only highly active for CO oxidation reaction but also sinter-resistant at temperatures normally observed at LTC engine exhaust. The Au-Cu@SiO2 catalyst exhibited excellent efficacy for CO oxidation with >95% conversion to CO2 achieved at 300 °C. While the presence of Cu enhanced CO conversion at low to intermediate temperatures (50-300 °C), silica encapsulation of the Au-Cu nanocomposites facilitated for remarkable stability of the catalyst. Moreover, the catalyst exhibited remarkable stability at high reaction temperatures which could be attributed to the SiO2 encapsulation of nanoparticles. The activity and stability of Au-Cu@SiO2 catalyst are suitable for its application in automotive after treatment devices, especially in low-temperature combustion engine exhaust.

URI

https://hdl.handle.net/11668/19241

Share

COinS