Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

King, Roger L.

Committee Member

Rhee, Hongjoo.

Committee Member

Younan, Nicolas H.

Committee Member

Du, Qian.

Date of Degree

5-17-2014

Document Type

Dissertation - Open Access

Major

Electrical and Computer Engineering

Degree Name

Doctor of Philosophy

College

James Worth Bagley College of Engineering

Department

Department of Electrical and Computer Engineering

Abstract

A data analytic materials informatics methodology is proposed after applying different data mining techniques on some datasets of particular domain in order to discover and model certain patterns, trends and behavior related to that domain. In essence, it is proposed to develop an information mining tool for vapor-grown carbon nanofiber (VGCNF)/vinyl ester (VE) nanocomposites as a case study. Formulation and processing factors (VGCNF type, use of a dispersing agent, mixing method, and VGCNF weight fraction) and testing temperature were utilized as inputs and the storage modulus, loss modulus, and tan delta were selected as outputs or responses. The data mining and knowledge discovery algorithms and techniques included self-organizing maps (SOMs) and clustering techniques. SOMs demonstrated that temperature had the most significant effect on the output responses followed by VGCNF weight fraction. A clustering technique, i.e., fuzzy C-means (FCM) algorithm, was also applied to discover certain patterns in nanocomposite behavior after using principal component analysis (PCA) as a dimensionality reduction technique. Particularly, these techniques were able to separate the nanocomposite specimens into different clusters based on temperature and tan delta features as well as to place the neat VE specimens in separate clusters. In addition, an artificial neural network (ANN) model was used to explore the VGCNF/VE dataset. The ANN was able to predict/model the VGCNF/VE responses with minimal mean square error (MSE) using the resubstitution and 3olds cross validation (CV) techniques. Furthermore, the proposed methodology was employed to acquire new information and mechanical and physical patterns and trends about not only viscoelastic VGCNF/VE nanocomposites, but also about flexural and impact strengths properties for VGCNF/ VE nanocomposites. Formulation and processing factors (curing environment, use or absence of dispersing agent, mixing method, VGCNF fiber loading, VGCNF type, high shear mixing time, sonication time) and testing temperature were utilized as inputs and the true ultimate strength, true yield strength, engineering elastic modulus, engineering ultimate strength, flexural modulus, flexural strength, storage modulus, loss modulus, and tan delta were selected as outputs. This work highlights the significance and utility of data mining and knowledge discovery techniques in the context of materials informatics.

URI

https://hdl.handle.net/11668/16625

Share

COinS