Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Zhang, Dongmao

Committee Member

Wipf, David

Committee Member

Mlsna, Todd E.

Date of Degree

5-6-2017

Document Type

Graduate Thesis - Open Access

Major

Chemistry

Degree Name

Master of Science (M.S.)

College

College of Arts and Sciences

Department

Department of Chemistry

Abstract

The mechanism of organothiol (OT) binding to gold has remained controversial for decades. There are three mechanisms proposed for OT binding to gold surfaces. The first is the radical pathway in which the sulfur-bound hydrogen atoms (RS-H) are released as hydrogen atoms which eventually converted into hydrogen gas. Second is the deprotonation pathway in which the sulfur-bound hydrogen atoms leave as protons. Third is direct adsorption in which the RS-H bonds remain intact on the gold surface. This study demonstrates a combined pH and surface enhanced Raman spectroscopic study of organothiol binding to citrate- and borohydride-reduced gold nanoparticles (AuNPs) in polar (water), moderately polar (dichloromethane), and nonpolar (toluene,hexane) solvents. Thiol deprotonation provides a unified pathway for OT binding to AuNPs regardless of solvent polarity of the ligand binding solutions. This work should contribute to resolve the long-standing debate on the fate of the sulfur-bound hydrogen of organothiols self-assembled on gold.

URI

https://hdl.handle.net/11668/20361

Share

COinS