Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Emerson, Joseph P.

Committee Member

Beard, Debbie J.

Committee Member

Lewis, Edwin A.

Committee Member

Fitzkee, Nicholas C.

Committee Member

Mlsna, Todd E.

Date of Degree

8-14-2015

Document Type

Dissertation - Open Access

Major

Chemistry

Degree Name

Doctor of Philosophy (Ph.D)

College

College of Arts and Sciences

Department

Department of Chemistry

Abstract

This report details the activities and inhibition of metal-substituted human carbonic anhydrase II (M-HCA-II). The traditional activities (hydrolysis of CO2 and para-nitrophenol acetate) in addition to new activities (oxidation of 2-aminophenol, disproportionation of H2O2, and disproportionation of superoxide) were investigated. Values reported for the relative hydrolytic activities of M-HCA-IIs are reported here for the first time, ranging from 47.5 % (plus or minus 0.6) to 86 % (plus or minus 4) for the hydrolysis of CO2 and from 0.299 % (plus or minus 0.012) to 4.72 % (plus or minus 0.015) for the hydrolysis of para-nitrophenol acetate. With respect to new activities, only the oxidation of 2-aminophenol was observed. Turnover was observed for Fe-HCA-II (kcat/KM = 3.6 plus or minus 1.3 mM-1 s-1) and Cu-HCA-II (kcat/KM = 8 plus or minus 2 mM-1 s-1). Inhibition of Zn-, (di-substituted) Cu2-, and Cu/Zn-HCA-II hydrolysis of CO2 and para-nitrophenol acetate by sulfanilamide, coumarin, and ortho-coumaric acid were investigated. Sulfanilamide was shown to inhibit: Zn-HCA-II, Cu2-HCA-II, and Cu/Zn-HCA-II - (with CO2) KM = 8.9 plus or minus 1.1 microM, 11 plus or minus 2 microM, 8.8 plus or minus 1.4 microM and (with p-nitrophenyl acetate) KM = 8.4 plus or minus 1.0 microM, (none), 8.4 plus or minus 1.4 microM, respectively. No inhibition was observed for coumarin or ortho-coumaric acid or its derivatives for any CAs studied.

URI

https://hdl.handle.net/11668/19906

Share

COinS