Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Donohoe, J. Patrick

Committee Member

Anderson, Derek T.

Committee Member

Topsakal, Erdem

Committee Member

Younan, Nicolas H.

Date of Degree

8-14-2015

Document Type

Dissertation - Open Access

Major

Electrical and Computer Engineering

Degree Name

Doctor of Philosophy

College

James Worth Bagley College of Engineering

Department

Department of Electrical and Computer Engineering

Abstract

In this dissertation, methods utilizing matched illumination theory to optimally design waveforms for enhanced target detection and identification in the context of through-the-wall radar (TWR) are explored. The accuracy of assumptions made in the waveform design process is evaluated through simulation. Additionally, the moisture profile of an adobe wall is investigated, and it is shown that the moisture profile of the wall will introduce significant variations in the matched illumination waveforms and subsequently, affect the resulting ability of the radar system to correctly identify and detect a target behind the wall. Experimental measurements of adobe wall moisture and corresponding dielectric properties confirms the need for accurate moisture profile information when designing radar waveforms which enhance signal-to-interference-plus-noise ratio (SINR) through use of matched illumination waveforms on the wall/target scenario. Furthermore, an evaluation of the ability to produce an optimal, matched illumination waveform for transmission using simple, common radar systems is undertaken and radar performance is evaluated.

URI

https://hdl.handle.net/11668/20077

Share

COinS