Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Anderson, Derek T.

Committee Member

Ball, John E.

Committee Member

Younan, Nicholas H.

Date of Degree

5-9-2015

Document Type

Graduate Thesis - Open Access

Major

Electrical and Computer Engineering

Degree Name

Master of Science

College

James Worth Bagley College of Engineering

Department

Department of Electrical and Computer Engineering

Abstract

Techniques for improving the information quality present in imagery for feature extraction are proposed in this thesis. Specifically, two methods are presented: soft feature extraction and improved Evolution-COnstructed (iECO) features. Soft features comprise the extraction of image-space knowledge by performing a per-pixel weighting based on an importance map. Through soft features, one is able to extract features relevant to identifying a given object versus its background. Next, the iECO features framework is presented. The iECO features framework uses evolutionary computation algorithms to learn an optimal series of image transforms, specific to a given feature descriptor, to best extract discriminative information. That is, a composition of image transforms are learned from training data to present a given feature descriptor with the best opportunity to extract its information for the application at hand. The proposed techniques are applied to an automatic explosive hazard detection application and significant results are achieved.

URI

https://hdl.handle.net/11668/18174

Share

COinS