Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Rodgers III, John C.

Committee Member

Cooke III, William H.

Committee Member

Dyer, Jamie L.

Committee Member

McAnally, William H.

Committee Member

Meng, Qingmin

Date of Degree

5-1-2020

Document Type

Dissertation - Open Access

Major

Earth and Atmospheric Sciences

Degree Name

Doctor of Philosophy

College

College of Arts and Sciences

Department

Department of Geosciences

Abstract

Sediment is a major impairment in many streams and rivers in the drainage basins along the northern Gulf of Mexico. The use of geospatial technologies improves assessment and decision making for the management of environmental resources and conditions for coastal watersheds. This research focuses on the development of a conceptual qualitative model enhanced with expert input for the assessment of soil erosion potential in coastal watersheds. The conceptual model is built upon five layers (slope, precipitation, soil brightness or exposure, Kactor, and stream density) like those in a standard numerical soil loss model such as the Revised Universal Soil Loss Equation (RUSLE). The conceptual model produced a continuous surface to index erosion potential. Pearson’s correlation coefficient was used to identify variable sensitivity. The model was most sensitive to Kactor variable, followed by soil brightness, stream density, and slope. The model was not sensitive to the precipitation variable due to the lack of variability across the watershed. Expert input was added to the conceptual model for erosion potential with the Analytical Hierarchy Process (AHP). The AHP is used to value the importance of criteria, providing a quantitative weight for the qualitative data. The expert input increased the overall importance of topographic features and this increased cell counts in the upper erosion potential classes. The AHP weights were altered in 1% increments ranging from plus to minus 20% producing 201 unique runs. A quartile analysis of the runs was used to define areas of model agreement. The quartile analysis allowed for the application of an analysis mask to identify areas of increased erosion potential for improved management related decisions. The conceptual and AHP erosion potential output data, including watershed management priority rankings, were published as web mapping services for story map development as a transition to a decision support system. The limits of the story map to allow user interactions with model output rendered an unacceptable platform for decision support. The story map does offer an alternative to static reports and could serve to improve dissemination of spatial data as well as technical reports and plans like a watershed management plan.

URI

https://hdl.handle.net/11668/16764

Share

COinS