Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Karsi, Attila

Committee Member

Lawrence, Mark L.

Committee Member

Pinchuk, Lesya M.

Committee Member

Baumgartner, Wes

Committee Member

El-Begawey, Mahmoud

Date of Degree

12-14-2018

Original embargo terms

Visible MSU Only for 3 Years

Document Type

Dissertation - Open Access

Major

Veterinary Medical Science

Degree Name

Doctor of Philosophy

College

College of Veterinary Medicine

Department

Veterinary Medical Science Program

Abstract

Edwardsiella ictaluri causes enteric septicemia of catfish (ESC), one of the most important bacterial diseases of farmed channel catfish in the USA. Use of live attenuated vaccines (LAVs) is an effective strategy for combating mortalities in catfish farms. Our research group has developed three live attenuated E. ictaluri strains [EiΔevpB, EiΔgcvPΔsdhCΔfrdA (ESC-NDKL1), and EiΔhemRΔfrdAΔsdhC (triple-hemR)] that provide various levels of protection against ESC. However, the protective mechanisms of these vaccine candidates are mostly unknown. The overall objective of my study was to investigate protective mechanisms of these LAVs. To accomplish this, catfish fry were immersion challenged with EiΔevpB, ESC-NDKL1, and triple-hemR. Additional catfish fry were immersion challenged with Aquavac-ESC and E. ictaluri wild-type (EiWT) as controls. The internalization of antigens through the mucosal surfaces as well as the pathology and molecular immune responses were studied. The investigations showed that EiΔevpB and ESC-NDKL1 were highly safe and efficacious compared to Aquavac-ESC and EiWT. Pathologically, vaccination with EiΔevpB and ESC-NDKL1 decreased the pathological lesions, EiWT replication in catfish, and increased the ability of the immune system to resist and kill EiWT. On the other hand, triple-hemR was not safe causing severe tissue damage similar to EiWT. The gene expression data showed significantly high expression of innate and adaptive immune genes following vaccination and challenge with EiWT. Additionally, EiΔevpB and ESC-NDKL1 induced immune proliferation in pronephros after exposure to EiWT. Taken together, EiΔevpB and ESC-NDKL1 vaccine strains performed better to induce immune responses and reduce damage in the host tissues during EiWT challenge compared to Aquavac-ESC.

URI

https://hdl.handle.net/11668/18556

Share

COinS